How do you integrate int x(5^(-x^2))dx?

1 Answer
Nov 28, 2016

The answer is =-(1/2)5^(-x^2)/ln5+C

Explanation:

We use the substitution

u=-x^2

du=-2xdx

xdx=(-du)/2

Therefore,

intx(5^(-x^2))dx=-1/2int 5^(u)du

Let, y=5^(u)

Then taking the logarithm

lny=u ln5

y=e^(u ln5)

int 5^(u)du=inte^(u ln5)du=e^(u ln5)/ln5=y/ln5=5^(u)/ln5

Therefore,

intx(5^(-x^2))dx=-(1/2)5^(-x^2)/ln5+C