How do you integrate int xe^(-x^2/2)∫xe−x22 from [0,sqrt2][0,√2]? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Andrea S. Feb 9, 2017 int_0^sqrt2 xe^(-x^2/2)dx = (e-1)/e∫√20xe−x22dx=e−1e Explanation: Evaluate: int_0^sqrt2 xe^(-x^2/2)dx = int_0^sqrt2 e^(-x^2/2)d(x^2/2)∫√20xe−x22dx=∫√20e−x22d(x22) int_0^sqrt2 xe^(-x^2/2)dx =[-e^(-x^2/2)]_0^sqrt2∫√20xe−x22dx=[−e−x22]√20 int_0^sqrt2 xe^(-x^2/2)dx =-e^(-1)+e^0∫√20xe−x22dx=−e−1+e0 int_0^sqrt2 xe^(-x^2/2)dx = 1 -1/e = (e-1)/e∫√20xe−x22dx=1−1e=e−1e Answer link Related questions How do you evaluate the integral inte^(4x) dx∫e4xdx? How do you evaluate the integral inte^(-x) dx∫e−xdx? How do you evaluate the integral int3^(x) dx∫3xdx? How do you evaluate the integral int3e^(x)-5e^(2x) dx∫3ex−5e2xdx? How do you evaluate the integral int10^(-x) dx∫10−xdx? What is the integral of e^(x^3)ex3? What is the integral of e^(0.5x)e0.5x? What is the integral of e^(2x)e2x? What is the integral of e^(7x)e7x? What is the integral of 2e^(2x)2e2x? See all questions in Integrals of Exponential Functions Impact of this question 7997 views around the world You can reuse this answer Creative Commons License