How do you integrate int xe^(-x^2)dx from [0,1]?

1 Answer
Nov 6, 2016

int_0^1xe^(-x^2)dx=1/2(1-1/e)

Explanation:

To determine the definite integral ,we compute the integral itself first then work on the boundaries.

As we know if :
intf(x)=F(x)+C

Then

int_a^bf(x)=F(b)-F(a)

Let us compute the integral intxe^(-x^2)dx
Let:
color(red)(u(x)=e^(-x^2)

Then

color(blue)(du(x)=-2xe^(-x^2)dx
rArrcolor(blue)(xe^(-x^2)=-1/2du(x)

intxe^(-x^2)dx=intcolor(blue)(-1/2du(x))

intxe^(-x^2)dx=-1/2intdu(x)

intxe^(-x^2)dx=-1/2u(x)+C

intxe^(-x^2)dx=-1/2color(red)(e^(-x^2)+C
" "

Let us calculate the value of the definite integral:

int_0^1xe^(-x^2)dx=-1/2(e^(-1^2)-e^(-0^2))

int_0^1xe^(-x^2)dx=-1/2(e^(-1)-e^(-0))

int_0^1xe^(-x^2)dx=-1/2(e^(-1)-1)

Therefore,

int_0^1xe^(-x^2)dx=1/2(1-1/e)