How do you integrate [xx2+1]dx?

1 Answer
Jun 8, 2015

This is of the form:

x2+a2

which means you can use the substitution:

x=atanθ

So, let:
x=tanθ
dx=sec2θdθ
x2+1=tan2θ+1=sec2θ=secθ

xx2+1dx=tanθsecθsec2θdθ

=(sec2θ)(secθtanθ)dθ

Notice how you can do a second substitution here, with u-substitution.

Let:
u=secθ
du=secθtanθdθ

=u2du=u33+C

=sec3θ3+C

Since secθ=x2+1:

13(x2+1)32+C