How do you integrate intdx/ sqrt(x^2 - a^2)?

2 Answers
Apr 19, 2018

intdx/sqrt(x^2-a^2)="arcosh"(x/a)+"c"

Explanation:

intdx/sqrt(x^2-a^2)=intdx/(asqrt(x^2/a^2-1))=int1/(asqrt((x/a)^2-1))dx

Now, let u=x/a and du=1/adx

Then

int1/(asqrt((x/a)^2-1))dx=int1/sqrt(u^2-1)dx="arcosh"(u)+"c"="arcosh"(x/a)+"c"

Apr 19, 2018

int dx/sqrt(x^2-a^2) = ln abs (x +sqrt(x^2-a^2)) +C

Explanation:

The integrand is defined for x in (-oo,-a) uu (a,+oo). Let us focus first on x in (a,+oo) and substitute:

x = a sect

dx = asect tant

with t in (0,pi/2)

so:

int dx/sqrt(x^2-a^2) = int (asect tant dt)/sqrt(a^2sec^2t-a^2)

int dx/sqrt(x^2-a^2) = int (sect tant dt)/sqrt(sec^2t-1)

Use now the trigonometric identity:

sec^2t-1 = tan^2t

and as for t in (0,pi/2) the tangent is positive:

sqrt(sec^2t-1) = tan^

Then:

int dx/sqrt(x^2-a^2) = int (sect tant dt)/tant

int dx/sqrt(x^2-a^2) = int sect dt

int dx/sqrt(x^2-a^2) = ln abs (sect +tant) +C

Undoing the substitution:

int dx/sqrt(x^2-a^2) = ln abs (x/a +sqrt(x^2/a^2-1)) +C

int dx/sqrt(x^2-a^2) = ln abs (x +sqrt(x^2-a^2)) +C

By differentiating we can see that the solution is valid also for x in (-oo,-3)