How do you integrate intsec3x?

1 Answer
Feb 8, 2017

intsec(3x)dx=1/3lnabs(sec(3x)+tan(3x))+C

Explanation:

intsec(3x)dx

Use the substitution u=3x, implying that du=(3)dx. Then:

=1/3intsec(3x)(3)dx=1/3intsec(u)du

This is a common integral: intsec(u)du=lnabs(sec(u)+tan(u))+C

We can derive this integral by multiplying the integrand by (sec(u)+tan(u))/(sec(u)+tan(u)):

=1/3intsec(u)(sec(u)+tan(u))/(sec(u)+tan(u))du=1/3int(sec^2(u)+sec(u)tan(u))/(sec(u)+tan(u))du

Now let v=sec(u)+tan(u). This implies that dv=(sec(u)tan(u)+sec^2(u))du. This is the numerator:

=1/3int(dv)/v=1/3lnabsv+C=1/3lnabs(sec(u)+tan(u))+C

Finally:

=1/3lnabs(sec(3x)+tan(3x))+C