How do you integrate intx^3sqrt(16 - x^2) dx?

1 Answer
Jun 24, 2015

I would let:
x = 4sintheta
dx = 4costhetad theta
sqrt(16 - x^2) = 4costheta
x^3 = 64sin^3theta

=>1024int sin^3thetacos^2thetad theta

=1024int sin^2thetasinthetacos^2thetad theta

=1024int (1-cos^2theta)cos^2thetasinthetad theta

At this point you can let:
u = costheta
du = -sinthetad theta

=> 1024int (cos^2theta - 1)cos^2theta(-sintheta)d theta

= 1024int (u^2 - 1)u^2du

= 1024int u^4 - u^2du

= 1024(u^5/5 - u^3/3)

= 1024(cos^5theta/5 - cos^3theta/3)

Since costheta = sqrt(16-x^2)/4:

= 1024((sqrt(16-x^2)/4)^5/5 - (sqrt(16-x^2)/4)^3/3)

= 1024(((16-x^2)^(5/2)/1024)/5 - ((16-x^2)^(3/2)/64)/3)

= 1024((16-x^2)^(5/2)/(5*1024) - (16-x^2)^(3/2)/(3*64))

= cancel(1024)((16-x^2)^(5/2)/(5*cancel(1024)) - (16-x^2)^(3/2)/(3/16*cancel(1024)))

= color(green)(1/5(16-x^2)^("5/2") - 16/3(16-x^2)^("3/2") + C)

Normally here would be okay, but we can go a bit further.

= (16-x^2)^(3/2)(1/5(16-x^2) - 16/3)

= (16-x^2)^(3/2)(3/15(16-x^2) - 80/15)

= 1/15(16-x^2)^(3/2)(3(16-x^2) - 80)

= 1/15(16-x^2)^(3/2)(48-3x^2 - 80)

= 1/15(16-x^2)^(3/2)(-32-3x^2)

= color(blue)(-1/15(16-x^2)^("3/2")(3x^2 + 32) + C)