How do you integrate (lnx)/(2x)lnx2x?

2 Answers
May 21, 2018

Is an inmediate integral. See below

Explanation:

We know that if f(x)=lnxf(x)=lnx then f´(x)=1/x and with the chain rule

if f(x)=ln(g(x)) then f´(x)=(g´(x))/g(x)

Then intlnx/(2x)dx=1/4ln^2x+C

May 21, 2018

1/4(lnx)^2+C.

Explanation:

Let, I=intlnx/(2x)dx=1/2intlnx*1/xdx.

Now, we use IBP : intu*v'dx=u*v-intu'*vdx, with,

u=lnx and v'=1/x.

rArr u'=1/x and v=int1/xdx=lnx.

Hence, I=1/2[(lnx)(lnx)-int(1/x*lnx)dx], i.e.,

I=1/2(lnx)^2-1/2intlnx*1/xdx, or,

I=1/2(lnx)^2-I.

:. 2I=1/2(lnx)^2.

rArr I=1/4(lnx)^2+C.