How do you integrate [sin(3x)/(1+cos(3x)] + x^3e^(1-x^4)] dx?
1 Answer
Explanation:
We have:
int [sin(3x)/(1+cos(3x)] + x^3e^(1-x^4)] dx
Split this into two integrals:
=intsin(3x)/(1+cos(3x))dx+intx^3e^(1-x^4)dx
Examining just the first integral:
Let
We can use substitution: let
A=1/3intsin(3x)/(1+cos(3x))(3)dx=1/3intsin(u)/(1+cos(u))du
We can now use substitution again: let
A=-1/3int(-sin(u))/(1+cos(u))du=-1/3int(dv)/v
Note that
A=-1/3ln(absv)+C=-1/3ln(abs(1+cos(u)))+C
A=-1/3ln(abs(1+cos(3x)))+C
Now, onto the second integral:
Let
Again, we will use substitution: let
B=-1/4int-4x^3e^(1-x^4)dx=-1/4inte^tdt
Note that
B=-1/4e^t+C=-1/4e^(1-x^4)+C
Combining
-1/3ln(abs(1+cos(3x)))-1/4e^(1-x^4)+C