How do you integrate [sin(3x)/(1+cos(3x)] + x^3e^(1-x^4)] dx?

1 Answer
Jun 12, 2016

-1/3ln(abs(1+cos(3x)))-1/4e^(1-x^4)+C

Explanation:

We have:

int [sin(3x)/(1+cos(3x)] + x^3e^(1-x^4)] dx

Split this into two integrals:

=intsin(3x)/(1+cos(3x))dx+intx^3e^(1-x^4)dx

Examining just the first integral:

Let A=intsin(3x)/(1+cos(3x))dx.

We can use substitution: let u=3x, which implies that du=3dx.

A=1/3intsin(3x)/(1+cos(3x))(3)dx=1/3intsin(u)/(1+cos(u))du

We can now use substitution again: let v=1+cos(u), which implies that dv=-sin(u)du.

A=-1/3int(-sin(u))/(1+cos(u))du=-1/3int(dv)/v

Note that int(dv)/v=ln(absv)+C.

A=-1/3ln(absv)+C=-1/3ln(abs(1+cos(u)))+C

A=-1/3ln(abs(1+cos(3x)))+C

Now, onto the second integral:

Let B=intx^3e^(1-x^4)dx.

Again, we will use substitution: let t=1-x^4, implying that dt=-4x^3dx.

B=-1/4int-4x^3e^(1-x^4)dx=-1/4inte^tdt

Note that inte^tdt=e^t+C.

B=-1/4e^t+C=-1/4e^(1-x^4)+C

Combining A and B, the complete integral is:

-1/3ln(abs(1+cos(3x)))-1/4e^(1-x^4)+C