Re-write it and use substitution.
int(tan2x+tan4x)dx=int((sin2x)/(cos2x)+(sin4x)/(cos4x))dx∫(tan2x+tan4x)dx=∫(sin2xcos2x+sin4xcos4x)dx.
Now do the integrals seperately:
int(sin2x)/(cos2x)dx∫sin2xcos2xdx.
Let u=cos2xu=cos2x. this makes du=-2sin2x dxdu=−2sin2xdx, so sin2x dx = -1/2dusin2xdx=−12du.
int(sin2x)/(cos2x)dx=-1/2int1/(cos2x)sin2x dx=-1/2 int 1/udu∫sin2xcos2xdx=−12∫1cos2xsin2xdx=−12∫1udu
So, int(sin2x)/(cos2x)dx=-1/2 ln abs (cos 2x)∫sin2xcos2xdx=−12ln|cos2x|.
In a similar way the second integral is found to be
int(sin4x)/(cos4x)dx=-1/4 ln abs (cos 4x)∫sin4xcos4xdx=−14ln|cos4x|.
So,
int(tan2x+tan4x)dx=-1/2 ln abs (cos 2x)-1/4 ln abs (cos 4x)+C∫(tan2x+tan4x)dx=−12ln|cos2x|−14ln|cos4x|+C.
Of course, there are many way of rewriting this expression..