How do you integrate (x-1) e^(-x^2+2x) dx(x1)ex2+2xdx?

2 Answers
Jul 31, 2016

- 1/2 e^(-x^2+2x) + C12ex2+2x+C

Explanation:

int color(red)((x-1) e^(-x^2+2x) )\ dx

the easy way, look for the pattern

d/dx ( e^(-x^2+2x) )

=d/dx(-x^2+2x) * e^(-x^2+2x)

=(-2x+2) * e^(-x^2+2x)

=-2 color(red)((x-1) e^(-x^2+2x))

so
int (x-1) e^(-x^2+2x) \ dx

=int - 1/2 d/dx ( e^(-x^2+2x) ) \ dx

= - 1/2 e^(-x^2+2x) + C

Jul 31, 2016

-1/2e^(_(x^2-2x)) +C

Explanation:

Let, I=int(x-1)e^(-x^2+2x)dx

We take subst. -x^2+2x=t, so, (-2x+2)dx=-2(x-1)dx=dt, or,

(x-1)dx=-1/2dt.

Therefore,

I=int(x-1)e^(-x^2+2x)dx=-1/2inte^tdt=-1/2e^t

=-1/2e^(-x^2+2x)=-1/2e^(_(x^2-2x)) +C