How do you multiply (2-x)^3(2x)3?

1 Answer

(2-x)^3=8-12x+6x^2-x^3(2x)3=812x+6x2x3

Explanation:

To multiply (2-x)^3(2x)3, we have several ways to do it. One solution is by Binomial Theorem and another is by simply multiplying the expression (2-x)(2x) by itself and the result by itself again.

Solution by Binomial Theorem

(a-b)^3=a^3-3a^2b+3ab^2-b^3(ab)3=a33a2b+3ab2b3

So that

(2-x)^3=2^3-3(2)^2*x+3(2)(x^2)-x^3(2x)3=233(2)2x+3(2)(x2)x3

(2-x)^3=8-12x+6x^2-x^3(2x)3=812x+6x2x3

Solution by multiplication

(2-x)^3=(2-x)(2-x)(2-x)(2x)3=(2x)(2x)(2x)

(2-x)^3=[2(2-x)-x(2-x)]*(2-x)(2x)3=[2(2x)x(2x)](2x)

(2-x)^3=[4-2x-2x+x^2]*(2-x)(2x)3=[42x2x+x2](2x)

(2-x)^3=[4-4x+x^2]*(2-x)(2x)3=[44x+x2](2x)

(2-x)^3=[4*(2-x)-4x*(2-x)+x^2*(2-x)](2x)3=[4(2x)4x(2x)+x2(2x)]

(2-x)^3=[8-4x-8x+4x^2+2x^2-x^3](2x)3=[84x8x+4x2+2x2x3]

(2-x)^3=8-12x+6x^2-x^3(2x)3=812x+6x2x3

God bless....I hope the explanation is useful.