How do you multiply (5k-5)(k^2-4k-5)?

2 Answers
Jun 30, 2017

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(5k) - color(red)(5))(color(blue)(k^2) - color(blue)(4k) - color(blue)(5)) becomes:

(color(red)(5k) xx color(blue)(k^2)) - (color(red)(5k) xx color(blue)(4k)) - (color(red)(5k) xx color(blue)(5)) - (color(red)(5) xx color(blue)(k^2)) + (color(red)(5) xx color(blue)(4k)) + (color(red)(5) xx color(blue)(5))

5k^3 - 20k^2 -25k - 5k^2 + 20k + 25

We can now group and combine like terms:

5k^3 - 20k^2 - 5k^2 -25k + 20k + 25

5k^3 + (-20 - 5)k^2 + (-25 + 20)k + 25

5k^3 + (-25)k^2 + (-5)k + 25

5k^3 - 25k^2 - 5k + 25

Jun 30, 2017

color(green)(5k^3-25k^2-5k+25

Explanation:

color(white)(aaaaaaaaaaaaa)k^2-4k-5
color(white)(aaaaaaaaaaa) xx underline(5k-5)
color(white)(aaaaaaaaaaaaa)5k^3-20k^2-25k
color(white)(aaaaaaaaaaaaaaaaa)-5k^2+20k+25
color(white)(aaaaaaaaaaaaa)overline(5k^3-25k^2-5k+25)

color(white)(aaaaaaaaaaaaa)color(green)(5k^3-25k^2-5k+25