How do you multiply (5x-2)(x^2-3x-2)(5x2)(x23x2) using vertical multiplication?

1 Answer
Feb 27, 2018

5x^3-17x^2-4x+45x317x24x+4

Explanation:

color(white)(ax^3+3"ddd")x^2-3x-2ax3+3dddx23x2
ul(color(white)("ddddddddddddd")5x-2 larr" Multiply")
color(white)("d")5x^3 -15x^2-10x color(white)("dddd")larr5x(x^2-3x-2)
ul(color(white)("dddd.d")-2x^2+color(white)("d")6x+4 larr-2(x^2-3x-2))
color(white)("d")5x^3-17x^2-color(white)("d")4x+4 larr"Added together"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Another approach

Given: color(blue)((5x-2))color( green)((x^2-3x-2))

Multiply everything in the right brackets by everything in the left

color(green)( color(blue)(5x)(x^2-3x-2) color(white)("ddd")color(blue)(-2)(x^2-3x-2)) " Notice the minus"
color(white)("dddddddddddddddddddddddddddddd")" follows the 2"

5x^3-15x^2-10x color(white)("ddd")-2x^2+6x+4

Regrouping

5x^3-15x^2-2x^2-10x+6x+4

5x^3-17x^2-4x+4