How do you multiply #(8x^4-3)^2#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Bill Jorgensen Jun 2, 2018 #=64x^16-48x^4+9# Explanation: You FOIL it: #=(8x^4-3)^2# #=(8x^4-3)(8x^4-3)# #=64x^16-24x^4-24x^4+9# #=64x^16-48x^4+9# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1541 views around the world You can reuse this answer Creative Commons License