How do you multiply (b^2-4b+6)^2?

2 Answers
Apr 2, 2017

See the entire solution process below:

Explanation:

First, we can rewrite this expression as:

(color(red)(b^2) - color(red)(4b) + color(red)(6))(color(blue)(b^2) - color(blue)(4b) + color(blue)(6))

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(b^2) xx color(blue)(b^2)) - (color(red)(b^2) xx color(blue)(4b)) + (color(red)(b^2) xx color(blue)(6)) - (color(red)(4b) xx color(blue)(b^2)) + (color(red)(4b) xx color(blue)(4b)) - (color(red)(4b) xx color(blue)(6)) + (color(red)(6) xx color(blue)(b^2)) - (color(red)(6) xx color(blue)(4b)) + (color(red)(6) xx color(blue)(6))

b^4 - 4b^3 + 6b^2 - 4b^3 + 16b^2 - 24b + 6b^2 - 24b + 36

We can now group and combine like terms:

b^4 - 4b^3 - 4b^3 + 6b^2 + 16b^2 + 6b^2 - 24b - 24b + 36

b^4 + (-4 - 4)b^3 + (6 + 16 + 6)b^2 + (-24 - 24)b + 36

b^4 - 8b^3 + 28b^2 - 48b + 36

Apr 2, 2017

color(blue)(b^4-8b^3+28b^2-48b+36

Explanation:

color(white)(aaaaaaaaaaaaa)b^2-4b+6
color(white)(aaaaaaaaaaaaa) b^2-4b+6
color(white)(aaaaaaaaaaaaa)-----
color(white)(aaaaaaaaaaaaa)b^4-4b^3+6b^2
color(white)(aaaaaaaaaaaaaaaa)-4b^3+16b^2-24b
color(white)(aaaaaaaaaaaaaaaaaaaaaaaa)6b^2-24b+36
color(white)(aaaaaaaaaaaaa)----------
color(white)(aaaaaaaaaaaa)color(blue)(b^4-8b^3+28b^2-48b+36