Given f(x) = (x-1)(x+1)(x-3)(x-5), consider each power of x in descending order and total up the combinations of coefficients:
x^4 : 1*1*1*1 = 1
x^3 : (-1*1*1*1)+(1*1*1*1)+(1*1*-3*1)+(1*1*1*-5) = -1+1-3-5 = -8
x^2 : (-1*1*1*1)+(-1*1*-3*1)+(-1*1*1*-5)+(1*1*-3*1)+(1*1*1*-5)+(1*1*-3*-5) = -1+3+5-3-5+15 = 14
x : (-1*1*-3*1)+(-1*1*1*-5)+(-1*1*-3*-5)+(1*1*-3*-5) = 3+5-15+15 = 8
1 : -1*1*-3*-5 = -15
So f(x) = x^4-8x^3+14x^2+8x-15
Check:
f(2) = 2^4-8*2^3+14*2^2+8*2-15
=16 - 64 + 56 + 16 - 15
=9
(2-1)(2+1)(2-3)(2-5) = 1*3*-1*-3 = 9