How do you multiply (x-1)(x+1)(x-3)(x-5)?

1 Answer
Jun 27, 2015

Consider each power of x in descending order and total up the possible combinations of coefficients to find:

(x-1)(x+1)(x-3)(x-5) = x^4-8x^3+14x^2+8x-15

Explanation:

Given f(x) = (x-1)(x+1)(x-3)(x-5), consider each power of x in descending order and total up the combinations of coefficients:

x^4 : 1*1*1*1 = 1

x^3 : (-1*1*1*1)+(1*1*1*1)+(1*1*-3*1)+(1*1*1*-5) = -1+1-3-5 = -8

x^2 : (-1*1*1*1)+(-1*1*-3*1)+(-1*1*1*-5)+(1*1*-3*1)+(1*1*1*-5)+(1*1*-3*-5) = -1+3+5-3-5+15 = 14

x : (-1*1*-3*1)+(-1*1*1*-5)+(-1*1*-3*-5)+(1*1*-3*-5) = 3+5-15+15 = 8

1 : -1*1*-3*-5 = -15

So f(x) = x^4-8x^3+14x^2+8x-15

Check:

f(2) = 2^4-8*2^3+14*2^2+8*2-15

=16 - 64 + 56 + 16 - 15

=9

(2-1)(2+1)(2-3)(2-5) = 1*3*-1*-3 = 9