How do you multiply (x-1)(x-2)(x-3)(x1)(x2)(x3)?

1 Answer
Jun 11, 2018

(x-1)(x-2)(x-3) = x^3-6x^2+11x-6(x1)(x2)(x3)=x36x2+11x6

Explanation:

It is helpful to know that:

(x-alpha)(x-beta)(x-gamma)(xα)(xβ)(xγ)

= x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma=x3(α+β+γ)x2+(αβ+βγ+γα)xαβγ

In this identity the expressions forming the coefficients of x^kxk are (apart from the alternating signs), the elementary symmetric polynomials in alpha, beta, gammaα,β,γ, namely:

  • alpha+beta+gammaα+β+γ

  • alphabeta+betagamma+gammaalphaαβ+βγ+γα

  • alphabetagammaαβγ

With alpha=1α=1, beta=2β=2 and gamma=3γ=3, we find:

alpha+beta+gamma=1+2+3=6α+β+γ=1+2+3=6

alphabeta+betagamma+gammaalpha=(1 * 2) + (2 * 3) + (3 * 1) = 2+6+3=11αβ+βγ+γα=(12)+(23)+(31)=2+6+3=11

alphabetagamma = 1 * 2 * 3 = 6αβγ=123=6

So:

(x-1)(x-2)(x-3) = x^3-6x^2+11x-6(x1)(x2)(x3)=x36x2+11x6