How do you multiply (x-1)(x-2)(x-3)(x−1)(x−2)(x−3)?
1 Answer
Explanation:
It is helpful to know that:
(x-alpha)(x-beta)(x-gamma)(x−α)(x−β)(x−γ)
= x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma=x3−(α+β+γ)x2+(αβ+βγ+γα)x−αβγ
In this identity the expressions forming the coefficients of
-
alpha+beta+gammaα+β+γ -
alphabeta+betagamma+gammaalphaαβ+βγ+γα -
alphabetagammaαβγ
With
alpha+beta+gamma=1+2+3=6α+β+γ=1+2+3=6
alphabeta+betagamma+gammaalpha=(1 * 2) + (2 * 3) + (3 * 1) = 2+6+3=11αβ+βγ+γα=(1⋅2)+(2⋅3)+(3⋅1)=2+6+3=11
alphabetagamma = 1 * 2 * 3 = 6αβγ=1⋅2⋅3=6
So:
(x-1)(x-2)(x-3) = x^3-6x^2+11x-6(x−1)(x−2)(x−3)=x3−6x2+11x−6