How do you multiply #(x-1) (x+4) (x-3)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Alan P. Apr 18, 2015 Multiply the terms two at a time: #(x-1)(x+4)# #=(x-1)*x+(x-1)*4# #=x^2-x+4x-4# #=x^2+3x-4# therefore #(x-1)(x+4)(x-3)# #=(x^2+3x-4)(x-3)# #=(x^2+3x-4)*x - (x^2+3x-4)*3# #=(x^3+3x^2-4x) - (3x^2+9x-12)# #=x^3-13x+12# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1465 views around the world You can reuse this answer Creative Commons License