How do you prove (1 + tanx) / (1 - tanx) = (1 + sin2x) / (cos2x)?

2 Answers
Mar 19, 2016

his is an identity. For proof, please see below.

Explanation:

(1+tanx)/(1-tanx) = (1+sinx/cosx)/(1-sinx/cosx)

= ((cosx+sinx)/cosx)/((cosx-sinx)/cosx)

= (cosx+sinx)/(cosx-sinx)

Now multiplying numerator and denominator by (cosx+sinx), we get

= ((cosx+sinx)(cosx+sinx))/((cosx-sinx)(cosx+sinx))

=(cos^2x+sin^2x+2sinxcosx)/(cos^2x-sin^2x)

= (1+sin2x)/(cos2x)

Mar 19, 2016

(1+tanx)/(1-tanx)
multiplying both numerator and denominator by (1+tanx) we have
LHS=(1+tanx)/(1-tanx)xx(1+tanx)/(1+anx)=(1+tanx)^2/(1-tan^2x)=(1+tan^2+2tanx)/(1-tan^2x)
dividing both numerator and denominator by (1+tan^2x) we have

((1+tan^2x)/(1+tan^2x)+(2tanx)/(1+tan^2x))/((1-tan^2x)/(1+tan^2x))
(1+sin2x)/ (cos2x)= RHS