How do you prove (1+tanx) tan2x = (2tanx)/(1-tanx)? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Konstantinos Michailidis Mar 7, 2016 From the identity tan(A+B)=[tanA+tanB]/[1-tanA*tanB] for A=B=x we have that tan(x+x)=2*tanx/(1-tan^2x)=> tan2x=[2*tanx]/[(1-tanx)*(1+tanx)]=> (1+tanx)*tan2x=[2*tanx]/(1-tanx) Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos x for the interval [0,2pi]? How do you find all solutions for 4sinthetacostheta=sqrt(3) for the interval [0,2pi]? How do you simplify cosx(2sinx + cosx)-sin^2x? If tan x = 0.3, then how do you find tan 2x? If sin x= 5/3, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1? See all questions in Double Angle Identities Impact of this question 6509 views around the world You can reuse this answer Creative Commons License