How do you prove cos 2theta = cos^(4)theta - sin^(4)theta?

1 Answer
Jun 9, 2015

We can prove this from left hand side as well as right hand side.

Explanation:

We know that

cos(2theta)=cos^2(theta)-sin^2(theta)
cos(2theta)= 1 *(cos^2(theta)-sin^2(theta))
cos(2theta)=(cos^2(theta)+sin^2(theta))(cos^2(theta)-sin^2(theta)) [since sin^2theta+cos^2theta=1]
cos(2theta)=cos^4(theta)-sin^4(theta) [since (a+b)(a-b)=a^2-b^2]

Hence proved