How do you prove cos 3 theta = 4 cos^3 theta - 3 cos theta?

1 Answer
Jun 6, 2016

Proof is given below.

Explanation:

cos3theta=cos(2theta+theta)

=cos2thetacostheta-sin2thetasintheta

=(cos^2theta-sin^2theta)costheta-2sinthetacosthetasintheta

=cos^3theta-sin^2costheta-2sin^2thetacostheta

=costheta(cos^2theta-sin^2theta-2sin^2theta)

=costheta(cos^2theta-3sin^2theta)

=cos^3theta-3sin^2thetacostheta

=cos^3theta-3(1-cos^2theta)costheta

=cos^3theta-3costheta+3cos^3theta

=4cos^3theta-3costheta