How do you prove cos (theta + 2pi) = cos theta ?
1 Answer
May 4, 2016
see explanation
Explanation:
Using the appropriate
color(blue)" Addition formula "
color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A±B)=cosAcosB∓sinAsinB)color(white)(a/a)|)))
rArrcos(theta+2pi)=costhetacos(2pi)-sinthetasin(2pi) now :
cos(2pi)=1" and " sin(2pi)=0
rArrcos(theta+2pi)=costheta .1-sintheta .0=costheta