How do you prove cos (theta + 2pi) = cos theta ?

1 Answer
May 4, 2016

see explanation

Explanation:

Using the appropriate color(blue)" Addition formula "

color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A±B)=cosAcosB∓sinAsinB)color(white)(a/a)|)))

rArrcos(theta+2pi)=costhetacos(2pi)-sinthetasin(2pi)

now : cos(2pi)=1" and " sin(2pi)=0

rArrcos(theta+2pi)=costheta .1-sintheta .0=costheta