How do you prove cos(x-(pi/2))=sin x?

1 Answer
Jun 2, 2016

See explanation.

Explanation:

There is a group of Trig Identities that contain:

cos(A-B)=cos(A)cos(B)+sin(A)sin(B)

For your question this translates to:

cos(x-pi/2)=cos(x)cos(pi/2)+sin(x)sin(pi/2)

Tony B

'................................................................
color(brown)("Condition 1")
cos(pi/2)->cos(90^o) = ("adjacent")/("hypotenuse")=0/h=0

'.................................................

color(brown)("Condition 2")

sin(pi/2)->sin(90^o)=("opposite")/("hypotenuse")=h/o

but for this condition h=o

=>sin(pi/2)=1
'......................................................

Thus we have:

cos(x-pi/2)=[cos(x)xx0]+[sin(x)xx1]

color(green)(=> cos(x-pi/2)= sin(x)" QED")

Tony B