How do you prove sin 5pi/12 = sin pi/6 cos pi/4 + cos pi/6 sin pi/4?

1 Answer
May 25, 2016

Note that pi/6+pi/4=(2pi)/12+(3pi)/12=(5pi)/12.

Also, recognize the sine addition formula:

sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

So, we can write (5pi)/12 as pi/6+pi/4 and then apply the sine addition formula.

sin((5pi)/12)=sin(pi/6+pi/4)=sin(pi/6)cos(pi/4)+cos(pi/6)sin(pi/4)