How do you prove sin (x+y)sin(x-y) = cos^2y-cos^2x?

1 Answer
Jan 22, 2016

You should use the following trigonometrical identities:

sin (x + y) = sin x cos y + cos x sin y

sin (x - y) = sin x cos y - cos x sin y

This will lead you to:

sin(x + y )sin (x - y)

= (sin x cos y + cos x sin y)(sin x cos y - cos x sin y)

= (color(blue)(sin x cos y) + color(red)(cos x sin y))(color(blue)(sin x cos y) - color(red)(cos x sin y))

... use the formula (a+b)(a-b) = a^2 - b^2:

= sin^2 x cos^2 y - cos^2 x sin^2 y

... use sin^2 x + cos^2 x = 1 " " <=> " " sin^2 x = 1 - cos^2 x:

= (1 - cos^2 x) cos^2 y - cos^2 x (1 - cos^2 y)

= cos^2 y - cos^2 x cos^2 y - cos^2 x + cos^2 x cos^2 y

= cos^2 y - cancel(cos^2 x cos^2 y) - cos^2 x + cancel(cos^2 x cos^2 y)

= cos^2 y - cos^2 x