How do you prove sin (x+y)sin(x-y) = cos^2y-cos^2x?
1 Answer
Jan 22, 2016
You should use the following trigonometrical identities:
sin (x + y) = sin x cos y + cos x sin y
sin (x - y) = sin x cos y - cos x sin y
This will lead you to:
sin(x + y )sin (x - y)
= (sin x cos y + cos x sin y)(sin x cos y - cos x sin y)
= (color(blue)(sin x cos y) + color(red)(cos x sin y))(color(blue)(sin x cos y) - color(red)(cos x sin y))
... use the formula
= sin^2 x cos^2 y - cos^2 x sin^2 y
... use
= (1 - cos^2 x) cos^2 y - cos^2 x (1 - cos^2 y)
= cos^2 y - cos^2 x cos^2 y - cos^2 x + cos^2 x cos^2 y
= cos^2 y - cancel(cos^2 x cos^2 y) - cos^2 x + cancel(cos^2 x cos^2 y)
= cos^2 y - cos^2 x