By the definition of the derivative,
#[{f(x)}/{g(x)}]'=lim_{h to 0}{f(x+h)/g(x+h)-f(x)/g(x)}/{h}#
by taking the common denominator,
#=lim_{h to 0}{{f(x+h)g(x)-f(x)g(x+h)}/{g(x+h)g(x)}}/h#
by switching the order of divisions,
#=lim_{h to 0}{{f(x+h)g(x)-f(x)g(x+h)}/h}/{g(x+h)g(x)}#
by subtracting and adding #f(x)g(x)# in the numerator,
#=lim_{h to 0}{{f(x+h)g(x)-f(x)g(x)-f(x)g(x+h)+f(x)g(x)}/h}/{g(x+h)g(x)}#
by factoring #g(x)# out of the first two terms and #-f(x)# out of the last two terms,
#=lim_{h to 0}{{f(x+h)-f(x)}/h g(x)-f(x){g(x+h)-g(x)}/h}/{g(x+h)g(x)}#
by the definitions of #f'(x)# and #g'(x)#,
#={f'(x)g(x)-f(x)g'(x)}/{[g(x)]^2}#
I hope that this was helpful.