Quotient Rule
Key Questions
-
y'=(g(x)f'(x)-f(x)g'(x))/(g(x))^2 y=f(x)/g(x)=(2x^4-3x)/(4x-1) f'(x)=8x^3-3 g'(x)=4 (g(x))^2=(4x-1)^2 y'=((4x-1)(8x^3-3)-(2x^4-3x)(4))/(4x-1)^2 y'=(32x^4-12x-8x^3+3-8x^4+12x)/(4x-1)^2 Simplify for combining like terms.
Solution->y'=(24x^4-8x^3+3)/(4x-1)^2 -
y'=1/(sqrtx)*1/((1-sqrtx)^2) Explanation :
Using Quotient Rule, which is
y=f(x)/g(x) , theny'=(g(x)f'(x)-f(x)g'(x))/(g(x))^2 Similarly following for the given problem,
y=(1+sqrtx)/(1-sqrtx) y'=((1-sqrtx)(1/(2sqrtx))-(1+sqrtx)(-1/(2sqrtx)))/((1-sqrtx)^2) y'=1/(2sqrtx)*(1-sqrtx+1+sqrtx)/((1-sqrtx)^2) y'=1/(2sqrtx)*(2)/((1-sqrtx)^2) y'=1/(sqrtx)*1/((1-sqrtx)^2) -
Answer:
((u(x))/(v(x)))^'=(u^'(x)*v(x)-u(x)*v'(x))/((v(x))²) Explanation:
Assuming that those who are reading have a minimum level in Maths, everyone knows perfectly that the quotient rule is
color(blue)(((u(x))/(v(x)))^'=(u^'(x)*v(x)-u(x)*v'(x))/((v(x))²)) , whereu(x) andv(x) are functions andu'(x) ,v'(x) respective derivates. But, where does it come from?
Let's find out!Considering
f(x)=(u(x))/(v(x)) , and by definition,f'(x)=lim_(h to 0)(f(x+h)-f(x))/h
So :
f'(x)=lim_(h to 0) ((u(x+h))/(v(x+h))-(u(x))/(v(x)))/h Now we need a common denominator :
f'(x)=lim_(h to 0)((u(x+h)color(red)(*v(x)))/(v(x+h)color(red)(*v(x)))-(u(x)color(red)(*v(x+h)))/(v(x)color(red)(*v(x+h))))/h
f'(x)=lim_(h to 0)(u(x+h)color(red)(*v(x))-u(x)color(red)(*v(x+h)))/(v(x)*v(x+h))*1/h
f'(x)=lim_(h to 0)(u(x+h)color(red)(*v(x))-u(x)color(red)(*v(x+h)))/(h*v(x)*v(x+h)) This expression isn't very useful for the moment, so let's add an intelligent 0:
f'(x)=lim_(h to 0)(u(x+h)v(x)-u(x)v(x+h)color(red)(+u(x)v(x)-u(x)v(x)))/(hv(x)v(x+h))
Now we can factoring :f'(x)=lim_(h to 0)(v(x)(u(x+h)-u(x))+u(x)(v(x)-v(x+h)))/(hv(x)v(x+h))
Now we can cut our limit into two limits :
f'(x)=lim_(h to 0)(v(x)(u(x+h)-u(x)))/(hv(x)v(x+h))+lim_(h to 0)(u(x)(v(x)-v(x+h)))/(hv(x)v(x+h))
f'(x)=lim_(h to 0)(v(x))/(v(x)v(x+h))*cancel((u(x+h)-u(x))/h)^(=u'(x))-lim_(h to 0)(u(x)(v(x+h)-v(x)))/(hv(x)v(x+h)) f'(x)=lim_(h to 0)(v(x)u'(x))/(v(x)(v(x+h)))-lim_(h to 0)(u(x))/(v(x)v(x+h))*cancel((v(x+h)-v(x))/h)^(=v'(x))
f'(x)=lim_(h to 0)(v(x)u'(x))/(v(x)(v(x+h)))-lim_(h to 0)(u(x)v'(x))/(v(x)v(x+h))
f'(x)=lim_(h to 0)(v(x)u'(x)-u(x)v'(x))/(v(x)v(x+h))
And becausev(x+h)≈_(h to 0)v(x) ,
f'(x)=(u^'(x)*v(x)-u(x)*v'(x))/((v(x))²)
\0/ here's our answer !