What is the derivative of sinx / (x^2+sinx)?

1 Answer
Mar 28, 2018

(dy)/(dx)=(x^2cosx-2xsinx)/((x^2+sinx)^2)

Explanation:

Let,

y=sinx/(x^2+sinx

We know that,

color(red)(d/(dx)(u/v)=(v(du)/(dx)-u(dv)/(dx))/v^2

So,

(dy)/(dx)=((x^2+sinx)(cosx)-sinx(2x+cosx))/((x^2+sinx)^2)

=(x^2cosx+cancel(sinxcosx)-2xsinx- cancel(sinxcosx))/((x^2+sinx)^2)

=(x^2cosx-2xsinx)/((x^2+sinx)^2)