How do you differentiate f(x)= (x-1)/(x+1)?

1 Answer

f' (x)=2/(x+1)^2

Explanation:

Use d/dx(u/v)=(v*d/dxu-u*d/dx(v))/(v^2)

Let u=x-1 and v=x+1

d/dx(u/v)=(v*d/dxu-u*d/dx(v))/(v^2)

f' (x)=d/dx((x-1)/(x+1))

f' (x)=((x+1)*d/dx(x-1)-(x-1)*d/dx(x+1))/((x+1)^2)

f' (x)=((x+1)(1)-(x-1)(1))/((x+1)^2)

f' (x)=(x+1-x+1)/(x+1)^2

f' (x)=2/(x+1)^2

God bless....I hope the explanation is useful.