How do you differentiate (xsinx)/(x^2+1)?

1 Answer
Dec 12, 2016

We'll be using the product rule with the quotient rule:

Let's think of your function as:

(f(x)*g(x))/(h(x))

Where:
f(x)=x
g(x)=sin(x)
h(x)=x^2+1

Thus, the derivative is:

[d/dx(f(x)*g(x))*h(x)-(f(x)*g(x))*d/dx(h(x))]/(h(x)^2)

Plug in our functions and find the derivatives:

[d/dx(xsinx)*(x^2+1)-(xsinx)*d/dx(x^2+1)]/((x^2+1)^2)

=[(sinx+xcosx)(x^2+1)-(2x^2sinx)]/(x^2+1)^2