How do you differentiate (3x-2)/(2x+1)^(1/2)?

2 Answers
Jun 17, 2018

(3x+5)/((2x+1)*sqrt(2x+1))

Explanation:

By the Quotient rule we get

(3sqrt(2x+1)-(3x-1)*(1/2)*(2x+1)^(-1/2)*2)/(2x+1)
multiplying numerator and denominator by sqrt(2x+1)

we get

((3(2x+1)-(3x-2)))/((2x+1)*sqrt(2x+1))
simplifying we get

(3x+5)/((2x+1)sqrt(2x+1))

Jun 17, 2018

f'(x)=(3x+1)/(2x+1)^(3/2)

Explanation:

With the quotient rule.

f(x)=(u(x))/(v(x))
f'(x)=(u'(x)v(x)-u(x)v'(x))/(v(x)^2)
f(x)=(3x+2)/((2x+1)^(1/2))
u(x)=3x+2 and u'(x)=3
v(x)=(2x+1)^(1/2) and v'(x)=1/2*2*(2x+1)^(-1/2)=(2x+1)^(-1/2)
f'(x)=(3*(2x+1)^(1/2)-(3x+2)(2x+1)^(-1/2))/(2x+1)
f'(x)=(3*(2x+1)-(3x+2))/(2x+1)^(3/2)
f'(x)=(3x+1)/(2x+1)^(3/2)