How do you differentiate y= sqrt(x/(x-9))?

1 Answer
May 2, 2017

(dy)/(dx)=-9/(2(x-9)sqrt(x(x-9))

Explanation:

Quotient rule states if y(x)=(g(x))/(h(x))

then (dy)/(dx)=((dg)/(dx)xxh(x)-(dh)/(dx)xxg(x))/(h(x))^2

Hence as y+sqrt(x/(x-9))=sqrtx/sqrt(x-9)

So here g(x)=sqrtx and (dg)/(dx)=1/(2sqrtx)

and h(x)=sqrt(x-9) and (dh)/(dx)=1/(2sqrt(x-9))

(dy)/(dx)=(1/(2sqrtx)xxsqrt(x-9)-1/(2sqrt(x-9))xxsqrtx)/(x-9)

=((x-9)/2-x/2)/((x-9)sqrt(x(x-9))

=-9/(2(x-9)sqrt(x(x-9))