How do you find the derivative of 1/(2x)?

2 Answers
Jul 9, 2016

-1/(2x^2)

Explanation:

Differentiate using the color(blue)"power rule"

color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(ax^n)=nax^(n-1))color(white)(a/a)|)))

Rewrite the function as.

1/(2x)=1/2xx1/x=1/2xxx^-1=1/2x^-1

rArrd/dx(1/2x^-1)=-1xx1/2x^(-1-1)=-1/2x^-2

rArrd/dx(1/(2x))=-1/2x^-2=-1/(2x^2)

Jul 9, 2016

ALTERNATIVE APPROACH

Explanation:

By the quotient rule:

(1/(2x))' = ((0 xx 2x) - (1 xx 2))/(2x)^2

(1/(2x))' = -2/(4x^2)

(1/(2x))' = -1/(2x^2)

Hopefully this helps!