What is the derivative of x/(1+x^2)?

1 Answer
Dec 31, 2016

dy/dx=(1-x^2)/(1+x^2).

Explanation:

Let y=x/(1+x^2).

We will use the following Quotient Rule for the Derivative :-

y=(u(x))/(v(x)) rArr dy/dx={v(x)u'(x)-u(x)v'(x)}/(v(x))^2

Hence,

dy/dx={(1+x^2)(x)'-x(1+x^2)'}/(1+x^2)^2

=[(1+x^2)(1)-(x){1'+(x^2)'}]/(1+x^2)^2

={(1+x^2)-x(0+2x)}/(1+x^2)^2

=(1+x^2-2x^2)/(1+x^2)^2

rArr dy/dx=(1-x^2)/(1+x^2).