How to find f'(0) ?

enter image source here

3 Answers
Mar 18, 2017

f'(0)=-6

Explanation:

As f(x)=(x^2+3)/(2x-1)

and using quotient rule,

f'(x)=(2x xx(2x-1)-2xx(x^2+3))/(2x-1)^2

= (4x^2-2x-2x^2-6)/(2x-1)^2

= (2x^2-2x-6)/(2x-1)^2

= (2(x^2-x-3))/(2x-1)^2

and f'(0)=(2(0^2-0-3))/(2xx0-1)^2=-6/1=-6

Mar 18, 2017

f'(0) = -6

Explanation:

f(x) = (x^2+3)/(2x-1)

Using the quotient rule:

(df)/dx = ((2x-1) d/dx(x^2+3) - (x^2+3) d/dx(2x-1))/(2x-1)^2

(df)/dx = (2x (2x-1) - 2(x^2+3))/(2x-1)^2

(df)/dx = (4x^2 -2x - 2x^2-6)/(2x-1)^2

(df)/dx = (2x^2 -2x -6)/(2x-1)^2

and for x=0

[(df)/dx]_(x=0) = -6

Mar 18, 2017

f'(0)=-6.

Explanation:

Recall that, f'(a)=lim_(x to a) {(f(x)-f(a))/(x-a)}.

:. f'(0)=lim_(xto0){(f(x)-f(0))/(x-0)}=lim_(xto0){(f(x)-f(0))/x}.

f(x)=(x^2+3)/(2x-1) rArr f(0)=(0+3)/(0-1)=-3.

:. f'(0)=lim_(xto0)[1/x{(x^2+3)/(2x-1)-(-3)}],

=lim_(xto0)1/x[{x^2+3+3(2x-1)}/(2x-1)],

=lim_(xto0)1/x{(x^2+6x)/(2x-1)},

=lim_(xto0){x(x+6)}/{x(2x-1)},

=lim_(xto0){(x+6)/(2x-1)}.

rArr f'(0)=(0+6)/(0-1)=-6.

Enjoy Maths.!