How do you differentiate y=(r^2-2r)e^r?

1 Answer
Dec 10, 2017

y'=-2e^r+e^rr^2

Explanation:

Apply the product rule:

The product rule states: (f*g)'(x)=[f'(x)*g(x)]+[f(x)*g'(x)]

Let f(x)=r^2-2r and g(x)=e^r And...

f'(x)=2r-2

g'(x)=e^r

So

y'=(2r-2*e^r)+(r^2-2r*e^r)

Simplify:

=(2r-2)e^r+(r^2-2r)e^r

=cancel(e^r2r)-2e^r+e^rr^2cancel(-e^r2r_

=-2e^r+e^rr^2