How do you differentiate y = ((2x+3)^4)/ x?

1 Answer
Jul 16, 2018

(dy)/(dx)=(3(2x-1)(2x+3)^3)/x^2

Explanation:

Here,

y=(2x+3)^4/x

Using Quotient Rule ,we get

(dy)/(dx)=(xd/(dx)((2x+3)^4)-(2x+3)^4d/(dx)(x))/(x)^2

=>(dy)/(dx)=(x*4(2x+3)^3 xx2-(2x+3)^4*1)/x^2

=>(dy)/(dx)=((2x+3)^3{8x-2x-3})/x^2

=>(dy)/(dx)=((2x+3)^3(6x-3))/x^2

=>(dy)/(dx)=(3(2x+3)^3(2x-1))/x^2