What is the derivative of cos(pi/x)/x^2 ?

1 Answer
Jun 12, 2015

Quotient Rule
d/(dx)[f(x)/(g(x))] = (g(x)f'(x) - f(x)g'(x))/(g(x))^2

f(x) = cos(pi/x)
g(x) = x^2

The derivatives in general are:
d/(dx)[cosu] = -sinu((du)/(dx))
d/(dx)[u^2] = 2u((du)/(dx))

=> [cancel(x^2)[-sin(pi/x)overbrace((pi)(-1/cancel(x^2)))^("Chain Rule")] - cos(pi/x)*2x]/(x^2)^2

Simplify:
= [pisin(pi/x) - 2xcos(pi/x)]/x^4