How do you differentiate f(x)=(2x)/(x^2+1)?

1 Answer
May 29, 2016

d f(x)=(2 *d x)/(x^2+1)

Explanation:

d f(x)=(2x)/(x^2+1)*d x

d f(x)=(2(x^2+1)+2x*2x)/(x^2+1)^2 *d x

d f(x)=(2(x^2+1)+4x^2)/(x^2+1)^2 * d x

d f(x)=(2x^2+2+4x^2)/(x^2 +1)^2 *d x

d f(x)=(6x^2+2)/(x^2+1)^2 *d x

d f(x)=(2cancel((x^2+1)))/cancel((x^2+1))^2* d x

d f(x)=(2 *d x)/(x^2+1)