How do you differentiate y=(sinx/(1+cosx))^2?
1 Answer
May 5, 2017
This can be simplified to
y = sin^2x/(1 + cosx)^2
y = (1 - cos^2x)/(1 + cosx)^2
y = ((1 + cosx)(1 - cosx))/(1 + cosx)^2
y = (1 - cosx)/(1 + cosx)
Now use the quotient rule.
y' = (sinx(1 + cosx) - (1 - cosx)-sinx)/(1 + cosx)^2
y' = (sinx + sinxcosx - (-sinx + sinxcosx))/(1 + cosx)^2
y' = (sinx + sinxcosx + sinx - sinxcosx)/(1 + cosx)^2
y' = (2sinx)/(1 + cosx)^2
Hopefully this helps!