How do I find f'(3) given that f(x)=sqrt(3x)/(x^2-4)?

1 Answer
May 29, 2017

f'(3)=-31/50

Explanation:

Let f(x)=sqrt(3x)/(x^2-4)

Quotient rule:

d/dx((p(x))/(q(x)))=(q(x)p'(x)-p(x)q'(x))/(q(x)^2)

Let p(x)=sqrt(3x), then p'(x)=sqrt3/(2sqrtx)

Let q(x)=x^2-4, then q'(x)=2x

f'(x)=((sqrt3/(2sqrtx))(x^2-4)-sqrt(3x)(2x))/(x^2-4)^2

Since we only care about the derivative at x=3, we shall leave simplifying the expression.

f'(3)=((sqrt3/(2sqrt3))(3^2-4)-sqrt(3(3))(2(3)))/(3^2-4)^2=-31/50