How do you differentiate e^x /lnxexlnx?
1 Answer
May 9, 2018
Explanation:
"differentiate using the "color(blue)"quotient rule"differentiate using the quotient rule
"given "y=(g(x))/(h(x))" then"given y=g(x)h(x) then
dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"
g(x)=e^xrArrg'(x)=e^x
h(x)=lnxrArrh'(x)=1/x
rArrd/dx((e^x)/(lnx))
=(e^xlnx-1/x e^x)/(lnx)^2=(e^x(lnx-1/x))/(lnx)^2