What is the derivative of 1/sqrt(1 - x^2)?

2 Answers
Apr 12, 2018

=(x)(1-x^2)^(-3/2)

Explanation:

f(x)=1/sqrt(1-x^2)=(sqrt(1-x^2))^-1=(1-x^2)^(-1/2)
d/dx f(x)=-1/2(1-x^2)^(-1/2-1)(0-2x)
=(2x)/2(1-x^2)^(-3/2)
=(x)(1-x^2)^(-3/2)

Apr 12, 2018

The derivative is (xsqrt(1-x^2))/(1-x^2)^2.

Explanation:

Using the quotient rule:

color(white)=d/dx[1/sqrt(1-x^2)]

=(d/dx[1]*sqrt(1-x^2)-1*d/dx[sqrt(1-x^2)])/(sqrt(1-x^2))^2

=(0*sqrt(1-x^2)-1*d/dx[sqrt(1-x^2)])/(1-x^2)

=(-d/dx[sqrt(1-x^2)])/(1-x^2)

Chain rule:

=(-1/(2sqrt(1-x^2))*d/dx[1-x^2])/(1-x^2)

=(-1/(2sqrt(1-x^2))*-2x)/(1-x^2)

=(x/sqrt(1-x^2))/(1-x^2)

=((xsqrt(1-x^2))/(1-x^2))/(1-x^2)

=(xsqrt(1-x^2))/(1-x^2)^2

That's the derivative. Hope this helped!