Find the derivative of (x+cosx)/tanxx+cosxtanx?

1 Answer
Feb 7, 2018

Derivative is (tanx-sinxtanx+xsec^2x+secx)/tan^2xtanxsinxtanx+xsec2x+secxtan2x

Explanation:

We use quotient rule, which says that derivative of (f(x))/(g(x))f(x)g(x) is

(g(x)f'(x)-f(x)g'(x))/[g(x)]^2

Hence derivative of (x+cosx)/tanx is

(tanx(1-sinx)-(x+cosx)xx(-sec^2x))/tan^2x

= (tanx-sinxtanx+xsec^2x+secx)/tan^2x