What is the first differential of y = (1+logx)/(1-logx)?
2 Answers
Explanation:
Assuming 'log' =
Applying the Quotient rule and the standard differential for
Explanation:
"Assuming " log x=log_(10) x
"Then " d/dx(log_(10)x)=1/(xln10) differentiate using the
color(blue)"quotient rule"
"Given " y=(g(x))/(h(x))" then"
color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))
"here " g(x)=1+logxrArrg'(x)=1/(xln10)
"and " h(x)=1-logxrArrh'(x)=1/(xln10)
rArrdy/dx=((1-logx)(1/(xln10))-(1+logx)(1/(xln10)))/(1-logx)^2
color(white)(rArrdy/dx)=(1/(xln10)(1-logx-1-logx))/(1-logx)^2
color(white)(rArrdy/dx)=-(logx^2)/((xln10)(1-logx)^2)