What is the first differential of y = (1+logx)/(1-logx)?

2 Answers
Apr 10, 2017

dy/dx= 2/(x(1-lnx)^2

Explanation:

Assuming 'log' = ln

y = (1+lnx)/(1-lnx)

Applying the Quotient rule and the standard differential for lnx

dy/dx = ((1-lnx)(1/x) - (1+lnx)(-1/x)) / ((1-lnx)^2)

= (1-lnx+1 +lnx)/ (x(1-lnx)^2

= 2/(x(1-lnx)^2

Apr 10, 2017

dy/dx=-(logx^2)/((xln10)(1-logx)^2)

Explanation:

"Assuming " log x=log_(10) x

"Then " d/dx(log_(10)x)=1/(xln10)

differentiate using the color(blue)"quotient rule"

"Given " y=(g(x))/(h(x))" then"

color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))

"here " g(x)=1+logxrArrg'(x)=1/(xln10)

"and " h(x)=1-logxrArrh'(x)=1/(xln10)

rArrdy/dx=((1-logx)(1/(xln10))-(1+logx)(1/(xln10)))/(1-logx)^2

color(white)(rArrdy/dx)=(1/(xln10)(1-logx-1-logx))/(1-logx)^2

color(white)(rArrdy/dx)=-(logx^2)/((xln10)(1-logx)^2)