How do you differentiate y=1/(t-1)^2y=1(t−1)2?
1 Answer
Mar 5, 2017
dy/dt = -2/(t-1)^3 dydt=−2(t−1)3
Explanation:
We have:
y = 1/(t-1)^2 = (t-1)^(-2)y=1(t−1)2=(t−1)−2
So then by the chain rule, we have:
dy/dt = (-2)(t-1)^(-3)*(1) dydt=(−2)(t−1)−3⋅(1)
" " = -2(t-1)^(-3) =−2(t−1)−3
" " = -2/(t-1)^3 =−2(t−1)3