What is the derivative of (cos x) / (1 + tan x)cosx1+tanx?

1 Answer
Apr 14, 2015

The answer is: y'=(-sinxcosx-sin^2x-1)/(cosx(1+tanx)^2).

Remembering the division rule, that is:

y=f(x)/g(x)rArry'=(f'(x)*g(x)-f(x)*g'(x))/[g(x)]^2,

than:

y'=(-sinx(1+tanx)-cosx*1/cos^2x)/(1+tanx)^2=

=(-sinx-sinx*sinx/cosx-1/cosx)/(1+tanx)^2=

=(-sinxcosx-sin^2x-1)/(cosx(1+tanx)^2).