How do you rationalize j/(1 - sqrt(j))j1j?

1 Answer
May 13, 2015

Multiply and divide by 1+sqrt(j)1+j to get:
j/(1-sqrt(j))*(1+sqrt(j))/(1+sqrt(j))=j1j1+j1+j=

You get:
=(j+jsqrt(j))/(1-j)=j+jj1j

-----------------

If jj is considered as the imaginary unit: j=sqrt(-1)j=1

You can divide by changing the denominator into a Real numbar as:

(j+jsqrt(j))/(1-j)*(1+j)/(1+j)=(j-1+jsqrt(j)-sqrt(j))/2=(-1+j+sqrt(j)[j-1])/2j+jj1j1+j1+j=j1+jjj2=1+j+j[j1]2

Where j^2=(sqrt(-1))^2=-1j2=(1)2=1